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Abstract In efforts such as land use change monitoring, carbon budgeting, and
forecasting ecological conditions and timber supply, there is increasing demand for
regional and national data layers depicting forest cover. These data layers must permit
small area estimates of forest area and, most importantly, provide associated error
estimates. This paper presents a model-based approach for coupling mid-resolution
satellite imagery with plot-based forest inventory data to produce estimates of proba-
bility of forest and associated error at the pixel-level. The proposed Bayesian hierar-
chical model provides access to each pixel’s posterior predictive distribution allowing
for a highly flexible analysis of pixel and multi-pixel areas of interest. The paper
presents a trial using multiple dates of Landsat imagery and USDA Forest Service
Forest Inventory and Analysis plot data. The results describe the spatial dependence
structure within the trial site, provide pixel and multi-pixel summaries of probability
of forest land use, and explore discretization schemes of the posterior predictive dis-
tributions to forest and non-forest classes. Model prediction results of a holdout set
analysis suggest the proposed model provides high classification accuracy, 88%, for
the trial site.

A. O. Finley (B)
Department of Forestry and Department of Geography, Michigan State University,
126 Natural Resources Building, East Lansing, MI 48824, USA
e-mail: finleya@msu.edu

S. Banerjee
Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building,
MMC 303, 420 Delaware Street S.E., Minneapolis, MN 5545, USA
e-mail: Sudiptob@biostat.umn.edu

R. E. McRoberts
Forest Inventory and Analysis, Northern Research Station, USDA Forest Service,
1992 Folwell Ave. St. Paul, MN 55108, USA
e-mail: rmcroberts@fs.fed.us

123



242 Environ Ecol Stat (2008) 15:241–258

Keywords Bayesian inference · Forest inventory · Logistic model · Markov Chain ·
Monte Carlo · Metropolis–Hastings · Spatial process models

1 Introduction

In areas such as land use change monitoring, carbon budgeting, and ecological and tim-
ber supply forecasting, there is an increasing demand for spatially explicit estimates of
forest area. In response to this need, many countries have established national invento-
ries designed to provide agencies and researchers with these base data (e.g., National
Inventory of Landscapes in Sweden, National Finnish Forest Inventory, Canadian
National Forest Inventory, and the National Forest Inventory of Switzerland).

Many of these large forest inventory programs couple inventory data collected from
field plots and ancillary data, such as satellite imagery, to form land use strata. These
strata are then used in design-based inference of forest attributes. Satellite imagery
has provided a useful and cost effective source for deriving the data layers required for
stratified estimation (McRoberts et al. 2002). These stratified estimation techniques
can produce satisfactory estimates and precision for medium to large geographic areas,
but they typically fail to satisfy precision expectations for small areas. Obtaining forest
area estimates for small areas requires more spatially intensive sampling designs, more
and different kinds of ancillary data, and/or methods that extract more information
from inexpensive sources of ancillary data. The increased costs associated with more
intense sampling and a larger suite of ancillary data often precludes these approaches.
Therefore, approaches to make better use of common and affordable satellite imagery
merit consideration.

This paper presents a model-based approach that couples field inventory data from
the Forest Inventory and Analysis (FIA) program of the USDA Forest Service with
mid-resolution satellite imagery to predict pixel-level forest probability with associ-
ated error estimates. The Bayesian hierarchical model presented provides access to
each pixel’s full predictive distribution from which we calculate the desired inferential
statistics. Further, when combined with an appropriate area estimator, these individ-
ual pixel estimates can provide area and error estimates for arbitrary areas of interest
(AOI).

The strength of the approach we describe is accessibility to pixel and multi-pixel
posterior predictive distributions. Many classifiers commonly used in forest area map-
ping can only offer estimates of overall classification accuracy. For example, the
popular k-nearest neighbor classifier might use a leave-one-out cross-validation to
provide a measure of expected classification accuracy for the entire mapping extent
(Franco-Lopez et al. 2001; Tomppo 1991) but cannot provide spatially explicit esti-
mates of precision for small areas within the mapped extent. Our proposed framework
precisely addresses this latter issue.

This paper is organized as follows. Section 2 presents a trial data set comprised of
FIA field inventory plots and satellite imagery from the Landsat sensors. Section 3
reviews the basic logistic model, followed by a description of a Bayesian hierarchi-
cal model for incorporating spatial structure within the context of the inventory data.

123



Environ Ecol Stat (2008) 15:241–258 243

Parameter estimation and prediction are then described. Trial results are in Sect. 4.
Discussion and concluding remarks are given in Sect. 5.

2 Data and trials

2.1 Forest inventory plot data

The FIA program of the USDA Forest Service has established field plot centers in
permanent locations using a sampling design that is assumed to produce a systematic
equal-probability sample with a random spatial component (Bechtold and Patterson
2005). Locations of forested plots are determined using global positioning system
(GPS) receivers, and locations of non-forested plots are determined using aerial imag-
ery and digitization methods. Each plot consists of four 7.31 m radius circular subplots.
The subplots are configured as a central subplot and three peripheral subplots with
centers located 36.58 m and azimuths of 0◦, 120◦, and 240◦ from the center of the
central subplot. The distance between the peripheral subplots is 63.00 m.

At each subplot, field crews record the proportion of area that satisfy specific ground
land use conditions. Subplot estimates of proportion forest area are obtained by col-
lapsing ground land use conditions into forest and non-forest classes consistent with
the FIA definition of forest land (Bechtold and Patterson 2005).

2.2 Satellite imagery

Landsat imagery for one Indiana scene, row 21 of path 23, was obtained from the
MultiResolution Characterization 2001 land cover mapping project (Homer et al.
2004) of the U.S. Geological Survey. Three dates of imagery were acquired: April
30 2001, July 8 2001, and October 31 2002, corresponding to early and peak vege-
tation green-up and senescence. The April and July images are from the Landsat 5
TM sensor and the October image is from the Landsat 7 ETM+sensor. All images
were georectified to a common base layer, each with a root mean square error of less
than 30 m. In the rectification process, images were resampled to a 30 × 30 m spatial
resolution using the cubic convolution algorithm (Campbell 1996).

Each date of imagery was tasseled cap transformed into its brightness, greenness,
and wetness components then scaled into 8-bit [0,255] (Kauth and Thomas 1976).
These nine spectral variables are reference as the image month concatenated with
tassel cap (TC), brightness (1), greenness (2), and wetness (3): AprilTC1, AprilTC2,
AprilTC3, JulyTC1, JulyTC2, JulyTC3, and OctTC1, OctTC2, OctTC3.

2.3 Combining FIA data and satellite imagery

The spatial configuration of the FIA subplots with centers separated by 36.58 m and
the 30 × 30 m spatial resolution of the imagery allows each subplot centroid to be
uniquely associated with the pixel with which it is spatially aligned. Our analysis
relates land use observed at the FIA subplots with the spectral values from the Landsat

123



244 Environ Ecol Stat (2008) 15:241–258

sensors. Therefore, several source of error must be acknowledged. First, the subplot
only represents approximately 19% of the pixel area. As a result, the subplot might not
adequately represent the proportion of forest area for the entire pixel. Second, pixel
values were assigned based on the subplot center coordinate; therefore, it is possi-
ble that a subplot area might cover portions of four or fewer pixels. Third, GPS and
image registration error might cause a subplot to be associated with the incorrect pixel,
resulting in the subplot observation being erroneously matched with a vector of spec-
tral values from a non-forested pixel, and vice versa. These sources of error obscure
the relationship between forest probability and spectral characteristics, increase the
uncertainty in model parameter estimates, and ultimately increase the variance in the
pixel-level predictive distribution.

2.4 Trial

To demonstrate the proposed model, a trial site that covers a mix of forest and non-
forest land use was selected within the Landsat scene described above. Several land
use conditions can exist within a given subplot (e.g., water, forest, non-forest); how-
ever, for this analysis only single condition forest and non-forest land use subplots
were considered. For the analysis, 500 subplots closest to the trial site centroid were
selected. From this sample, a holdout set of 25 plots (100 subplots) were randomly
selected and used for model validation. The remaining 400 subplots were used for
model construction. Within this set, 181 subplots were designated as forest and 219
were non-forest. All subplots were observed between the beginning of 1999 and the
end of 2003.

Within the model construction set, the sampling intensity is about one plot every
33 km2. The maximum distance between any two plots is 63.85 km. The maximum,
minimum, and mean distance between any two nearest neighbor plots is 6,303.72,
1,142.85, and 3,657.55 m, respectively. The maximum, minimum, and mean distance
between any plot and its second nearest neighbor plot is 8,351.15, 2,552.71, and
4,954.41 m, respectively.

For the trial a 32 km radius circle, centered on the trial site’s center, was clipped
from the nine variable image stack and used for mapping probability of forest and
associated error estimates. Further, within this image circle, 15 20 × 20 pixel (36 ha)
AOIs were selected to illustrate estimation of multi-pixel forest proportion. Based
only on visual interpretation of the raw Landsat images, the AOIs were selected to
represent areas with high, moderate, and low proportion of forested pixels.

3 Statistical modelling

3.1 Non-spatial logistic model

We first outline a basic logistic model that can be used for modelling the forestation.
Suppose we have i = 1, . . . , n subplots. We set yi as the binary variable designat-
ing this classification with yi = 1 denoting that subplot i is forested and yi = 0
otherwise. Conditional upon the set of predictor variables (spectral characteristics
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for us), say xi for subplot i, we assume that the yi’s follow a Bernoulli distribution,

yi
i.i.d∼ Ber(p(xi )) with P(yi = 1 | xi ) = p(xi ). The association between the response

data vector y = (y1, . . . , yn), and the n × m matrix of m spectral predictor variables
X = [xT

1 , . . . , xT
n ], where each xT

i is the 1 × m vector of spectral characteristics for
the i-th point, is modelled through a logistic link regression,

p(xi ) = exp(xT
i θ)

1 + exp(xT
i θ)

, (1)

where θ = (θ1, . . . , θm) is the vector of parameters to be estimated.
Letting Data denote all the available information, say y, X above, the likelihood

function for the data given the above model is,

L(θ; Data) =
n∏

i=1

p(xi )
yi (1 − p(xi ))

1−yi =
n∏

i=1

exp
(
xT
i θ

)yi

1 + exp
(
xT
i θ

) . (2)

This yields the corresponding log-likelihood function as

ln (L(θ; Data)) =
n∑

i=1

yi

(
xT
i θ

)
−

n∑

i=1

ln(1 + exp(xT
i θ)). (3)

Typically, from (3) iterative methods are used to obtain the maximum likelihood
estimates of the parameters, θ̂ . These, however, rely upon asymptotic (for large sam-
ples) distributional assumptions that are rarely verifiable in practice (Ferguson 1996).
Alternatively, we adopt a Bayesian paradigm (e.g., Gelman et al. 2004) that enables
direct probabilistic inference for all the model parameters by first specifying prior dis-
tributions for them and subsequently using the likelihood in (2) to obtain the posterior
distribution. In practice, therefore, if p(θ) is the prior distribution for θ , the posterior
distribution of θ is given by:

p(θ | Data) ∝ p(θ)L(θ; Data).

Markov chain Monte Carlo (MCMC) integration methods (e.g., Gelman et al. 2004)
provide samples from the full posterior distribution of θ that can subsequently be used
for inference.

3.2 Logistic model with spatial random effects

The unexplained residual uncertainty associated with the mean function in (1) does
not accommodate spatial correlation among subplot observations, which can impair
the precision of predictions. A multi-stage hierarchical model allows us to explicitly
incorporate spatial structure into the basic model. Indeed, for data sets revealing com-
plex variability patterns, building models hierarchically allow enormous richness in
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capturing variability by incorporating estimable parameters that should explain dif-
ferent sources of variation. Partitioning sources of variance through a hierarchical
specification often results in much better model fit, compared to fits obtained with
simpler (single stage) models.

The first stage of the hierarchical model assumes that the observed responses over
the locations are conditionally independent given the spatial effects and adds spatially
correlated random effects to the mean structure in (1). The second stage specifically
models the nature of association between these random effects. Finally, a full hierar-
chical specification is achieved by using prior distributions for the model parameters.
This is essentially the paradigm of Bayesian modelling (Gelman et al. 2004; Banerjee
et al. 2004).

Specifically for our setting, suppose the subplots are spatially referenced (e.g.,
Easting-Northing or some other coordinate system) as S = {s1, . . . , sN }. Then we
can envision the response as y(si ) = 1 or 0 depending upon whether the subplot
is forested. Within the augmented model, the probability that y(si ) = 1 depends
upon spatially-referenced predictor variables, x(si ) for subplot si , the regression slope
parameters θ , and the location-specific random effects w(si ) to yield:

p(si ) = exp
(
x(si )

T θ + w(si )
)

1 + exp
(
x(si )T θ + w(si )

) . (4)

In the present context, s ∈ D, which defines the surface of interest within �2.
The second stage of the hierarchical model specifies the association in the random

effects. A popular specification for the random effect is the Gaussian Process, denoted
by w(s) ∼ GP(µ(s),K(·)) where µ(s) is the process mean (or trend surface) and K(·)
is a positive definite covariance function. Gaussian processes are extremely popular
in modelling spatial variation, due to their ability to directly model spatial correlation.
More extensive treatments can be found, for example, in Cressie (1993), Chilés and
Delfiner (1999) and Banerjee et al. (2004).

We assume w(s) ∼ GP(0,K(φ)), where K(s − s′;φ) = σ 2ρ(s − s′;φ), which
means that for any arbitrary collection of sites, say S, the corresponding process reali-
zation w = (w(si ))

N
i=1 follows a multivariate Gaussian distribution MVN(0, σ 2R(φ)),

where R(φ) = [ρ(si − sj ;φ)]Ni,j=1 is the N × N spatial correlation matrix. Here
the strength of spatial association is captured through a spatial correlation function,
ρ(s−s′;φ). These functions are also known as positive definite functions as they must
ensure that the matrix R(φ) is positive definite—for any collection of sites in S. Boch-
ner’s theorem (see, e.g., Banerjee et al. 2004) characterizes the characteristic functions
of symmetric random variables as an exhaustive class of real-valued positive definite
functions. The exponential correlation function, ρ(s − s′;φ) = exp(−φ‖s − s′‖), is
among the more popular choices for its easier interpretability and is used in the cur-
rent analysis. The parameters associated with the exponential function and subsequent
covariance matrix, σ 2R(φ), are the spatial decay parameter φ and the spatial effect
variance σ 2. We describe the effective range d0 of the spatial process by solving
exp(−φd0) = 0.05 (i.e., d0 ≈ 3/φ).

123



Environ Ecol Stat (2008) 15:241–258 247

Finally, prior probability distributions are assigned to the model parameters that,
together with the data likelihood, yields a fully specified Bayesian hierarchical model.
We discuss this in detail in the following section.

3.3 The priors and likelihood

With the addition of the random effects, the parameter set is � = (θ, σ 2, φ, w) with
length m + 2 + n. The Bayesian hierarchical specification assigns prior distributions
to the parameters. Choice of priors can play an important role in the efficiency of the
algorithm. In the subsequent analysis, a non-informative (or uninformative) flat prior
is assigned to the fixed effects θ (i.e., p(θ) ∝ 1). The spatial effect variance parameter,
σ 2, is assumed to follow an inverse-Gamma distribution, σ 2 ∼ IG(aσ , bσ ). Fixing
aσ = 2, this distribution has an infinite variance, and its mean is bσ (as defined in
Appendix A of Gelman et al. 2004). This family is a widely used specification for
variance parameters, as it allows the modeler to center the prior on a reasonable belief
while maintaining a large prior variance. The large variance of this prior should allow
the data to overwhelm the prior beliefs and dominate the inference. The spatial decay
parameter received a Uniform, φ ∼ U(aφ, bφ). Here, we emphasize the need for a
fairly informative proper prior for the φ parameter that will ensure proper and well-
identified posteriors and stabler convergence of algorithm (e.g., Berger et al. 2001).
Such information is usually based upon the configuration of the locations and, in par-
ticular, the distances between the sites. For instance, it is plausible that the spatial
range would not exceed the maximum intersite distance and would always exceed a
certain minimal distance. The parameters aφ and bφ can be determined based upon
these specifications.

The posterior distribution for � becomes

P(� | Data) ∝ P(φ)P (θ)P (σ 2)P (w | σ 2, φ) × L(�; Data), (5)

where L(�; Data) is the data likelihood depending upon the generic parameter set
�. In our current setting, the data likelihood constitutes the first stage of our hier-
archical model. It can be expressed more specifically as L(w, θ; y, X), where y =
(y(s1), . . . , y(sn))

T is the n × 1 response vector observed over locations in S, and
X = [xT (si )]ni=1 is the n × p matrix of independent predictors, which we often
suppress in the subsequent equations. Thus, L(w, θ; y, X) is modified from (2) to
incorporate the spatial effects

L(w; Data) =
n∏

i=1

P(y(si ) = 1|x(si ), θ , w(si ))
y(si )(1 − P(y(si )

= 1|x(si ), θ , w(si )))
1−y(si ), (6)

with P(y(si ) = 1) = logit−1(xT (si )θ + w(si )). The Gaussian Process specification
implies that theP(w | θ) is a multivariate normalMV N(0, σ 2R(φ)). The log-posterior
is now written as
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ln (p(� | y)) ∝ −
(
aσ + 1 + n

2

)
ln

(
σ 2

)
− bσ

σ 2

− 1

2σ 2 wT R−1w − 1

2
ln (|R|)

+
n∑

i=1

y(si )
(

x(si )
T θ+w(si )

)
−

n∑

i=1

ln
(

1 + exp(x(si )
T θ + w(si )

)
.

(7)

In the numerical implementation, the prior on φ is treated a bit differently. As stated
above, its prior is Uniform with the condition,

p(φ) =
{

1
bφ−aφ

if φ ∈ (
aφ, bφ

)
,

0 otherwise.
(8)

In principle, this condition is problematic when the posterior is log-transformed (i.e.,
ln(0) = −∞); however, this is easily treated in the sampling approach described in
the following section.

3.4 Posterior sampling

The Metropolis–Hastings algorithm was used to generate the marginal posterior dis-
tribution for each parameter in �. Initially, candidate values for the parameters were
drawn as a single block from a multivariate normal density. In an attempt to maintain
a ∼23% acceptance rate (Gelman et al. 2004), we adjusted the diagonal elements
(i.e., the tuning values) of the multivariate normal � matrix. However, we experi-
enced difficulty in achieving a reliable acceptance rate that would indicate sufficient
mixing. In fact the acceptance rate in our initial trials was typically ≤1%, while a
healthy rate should hover around 23% (Gelman et al. 2004). This is not unusual with
joint-Metropolis updates: although they are simpler to implement (entailing a single
likelihood evaluation for each iteration), with high-dimensional non-Gaussian likeli-
hoods and with less informative priors, these single block-updates may take a very
long to converge (i.e., to find their stationary distribution). Therefore we split � into its
components, and drew candidate values for θ , σ 2, φ, and w separately. This required
four sequential Metropolis–Hastings steps, where θ and w were block updated. In
this scheme, we monitored four separate acceptance rates, and generally found much
better mixing; this was further improved by specifying the covariance structure among
the θ as the dispersion of a multivariate normal proposal for θ .

As noted in the previous section, the Uniform prior on φ required that it be treated
differently than the other parameters. Specifically, each candidate value of φ drawn
from the normal proposal density was applied to the conditional statement (8). If
the candidate φ passed (8), it proceeded through the Metropolis–Hastings iteration;
otherwise, the candidate was discarded and subsequent candidates were drawn until
the condition was satisfied.
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3.5 Convergence diagnostics

The algorithms were written in C++ and used the Intel® Math Kernel Library BLAS
and LAPACK routines. Posterior samples were formatted to be read by the Con-
vergence Diagnostics and Output Analysis (CODA) available in R (see http://www.
R-project.org).

Multiple independent chains were run for the trial. Each chain was given a unique
seed for the program’s random number generator and starting values for the parameters
were
dispersed across each parameters’ feasible range. The chains were graphed using
appropriate trace plots (available in CODA) and the Gelman–Rubin diagnostics were
computed.

3.6 Model comparison

For the trial, the simple logistic model is compared to the logistic model with spatial
random effects using the deviance information criterion (DIC), proposed by Spiegel-
halter et al. (2002). DIC is similar to Akaike Information Criterion (AIC) in that it
penalizes larger models; however, DIC is more suited to hierarchical models as it esti-
mates the complexity, unlike AIC which assumes the penalty is known. This criterion
is based on the posterior distribution of the deviance statistic,

D(�) = −2 ln L(�; Data) + 2 ln h(Data), (9)

where L(�;Data) is the data likelihood given model parameters � and h(Data) is
some standardizing function of the data alone (thus can be dropped with no impact to
model selection). In this approach, the fit of the model is summarized by the posterior
expectation of the deviance, D = E� | Data[D], and the complexity of a model is
captured by the effective number of parameters, pD . Spiegelhalter et al. (2002) show
that a reasonable definition of pD is

pD = E� | Data[D] − D(E� | Data[�]) = D − D(�), (10)

where � is the mean of the parameters’ samples. Typically, this effective parameter
total, pD , will be less than the actual total number of parameters in the model due to
collinearity among the variables and borrowing of strength across random effects. The
DIC is then defined analogously to the AIC as the expected deviance plus the effective
number of parameters,

DIC = D + pD. (11)

Because small values of D suggest good fit and small values of pD indicate a par-
simonious model, the preferred models will have lower DIC. As with AIC and other
penalized likelihood criteria, DIC is not a metric for identifying the ‘correct’ model,
but merely a metric to compare a collection of alternative formulations (all of which
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might be incorrect). As alluded to above, DIC is scale-free; the choice of standardizing
function h(Data) in (9) is arbitrary. Thus, values of DIC have no intrinsic meaning,
only differences in DIC across models are meaningful.

3.7 Prediction

Predictions can be made once the samples {�(k)}Nk=1 are obtained from the posterior
distribution P(� | Data). The posterior predictive distribution we seek is

P(y(s0) = 1 | y, x, x(s0)) =
∫

P(y(s0) = 1 | �, y, x(s0))P (� | y, x)d�. (12)

where s0 denotes the location for which the vector x(s0) is known and we wish to pre-
dict y. Samples from (12) are obtained by composition sampling: for each �(k) from the
posterior sample we simply compute P(y(s0) = 1 | �(k), y, x(s0)) for k = 1, . . . , N .
Programmatically, we first generate a vector of N samples from s0’s location effect
with each element defined by a draw from a normal distribution with mean

ϕ
(k)T
0 R−1(φ(k))w(k) (13)

and variance

σ 2(k)
[
1 − ϕ

(k)T
0 R−1(φ(k))ϕ

(k)
0

]
, (14)

where ϕ
(k)
0 is the n×1 vector with i-th element given by ϕ

(k)
0i = exp(−φ(k)‖s0 − si‖).

Then, a vector of probabilities is generated with each element defined by (4) replacing
x(si) and w(si ) with x(s0) and w(s0). The resulting sample is precisely a sample from
the desired predictive distribution in (12).

A forest probability map can be created using the posterior mean or median (or, for
that matter, any other quantile) by simply carrying out the above predictive sampling
over a grid of sites. Creating the associated uncertainty map for these predictions is
just as simple. For the grid of sites, compute the uncertainty summary (standard devi-
ation or range) from the predictive sample. We point out that the standard deviations
computed from MCMC output are biased as these samples are correlated (Gelman
et al. 2004). However, this bias becomes negligible as the size of the MCMC sample
becomes large. This sample, being in our control (subject to computational limits), is
usually taken large enough and this issue is not serious.

3.8 Estimating multiple pixel AOI

Once complete posterior distributions are obtained for the pixel-level forest probabil-
ities, interest often turns to obtaining forest area for multi-pixel AOIs. To be precise,
suppose we are interested in a region composed of NA pixels, say A = ∪NA

i=1{si}
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(perhaps after suitable relabelling of the si’s). An estimate of the fraction of the forest
area in A is given in terms of the corresponding probabilities at the pixel level by

FA = 1

NA

NA∑

i=1

P(Y (si ) = 1). (15)

Hence, samples {F (k)
A }NMCMC

k=1 from the posterior distribution p(FA|Data) are imme-
diately obtained from {P (k)(Y (si )|Data)}Nk=1 using (15), once the latter are obtained
using the methods described in the preceding section. Note that any other functional,
such as the total area inside A under forests F̃A = |A|FA, where |A| denotes the area
of the region A, is also immediately accessible to posterior inference.

4 Trial results

4.1 Priors and model convergence

As described in Sect. 3.3, a flat prior was assigned to the θ . The variance term σ 2

received an inverse-Gamma prior IG(2, bσ ) with infinite variance and mean bσ .
Fitting a single stage logistic regression model with random effects and setting bσ

equal to the maximum likelihood estimate usually yields a reasonable centered, yet
vague, prior. The spatial decay parameter received a Uniform, φ ∼ U(aφ, bφ), where
bφ = 3 and aφ = 2e−4, which sets an effective spatial range of 1–15,000 m: one that
is about a quarter of the trial site’s diameter. Again, these priors were robust for our
analysis and we witnessed substantial posterior learning from the data.

Forthetrial,fiveMetropolis–Hastingschainswererun.Acceptanceratesforθ , σ 2, φ,
and w were between 15% and 30% for all chains. Each chain was run for 150,000
iterations. The CODA package was used to diagnose convergence by monitoring mix-
ing using Gelman–Rubin diagnostics and autocorrelations (e.g., Gelman et al. 2004,
Section 11.6). These revealed sufficient mixing of the chains after 30,000 iterations.
Therefore, the first 30,000 iterations were discarded as burn-in and the remaining pos-
terior samples were thinned for every 10 iterations and then combined to yield 60,000
samples (5 × 120, 000/10) for parameter estimation and prediction.

Following the criteria discussed in Sect. 3.6, the values D,pD , and DIC for the
non-spatial logistic model were 112.60, 10.57, and 123.17, respectively. For the spatial
model these values were 89.96, 14.03, and 103.97, respectively. Despite the greater
number of parameters, the lower DIC values support the spatial model over the non-
spatial model. The discrepancy between the effective number of parameters pD and
the true number, suggests that within the spatial model there is substantial shrinkage
toward the overall mean of the spatial process. We choose to continue the analysis
with the spatial model, based on the DIC criteria and the understanding that the spatial
dependence structure among observations is required for calculating unbiased variance
estimates on both model parameters and subsequent predictions.
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4.2 Parameter estimates, model validation, and prediction

Parameter estimates and predictions for the trail were based on 400 subplots. Table 1
offers the 2.5, 50, and 97.5 percentiles for the model parameters. The credible inter-
vals suggest that the intercept, all spring tasseled cap variables, and fall brightness and
wetness variables significantly contribute to the model fit. The median of the σ 2 and
φ is 1.36 and 0.00182, respectively. The distribution of the spatial decay parameter
φ, describes a process with spatial dependence within distances of 1,644.19 m. The
estimate of φ indicates strong within plot dependence (i.e., among subplots within a
plot). However, the large credible interval about the point estimate suggests there is
substantial variability in between plot dependence; specifically, the credible interval
suggests there might be dependence extending to the first an perhaps second nearest
neighbor plot.

The model validation used a holdout set of 25 plots. Of these 100 subplots, 88 were
correctly classified when using a cut-point of 0.5. Table 2 provides the prediction sum-
mary for only the center subplots of the 25 holdout plots. Although the majority of the
predictions correctly place their entire distribution above or below the 0.5 cut-point,
several predictive distributions straddle the cut-point (e.g., subplots 2, 7, 9, 11, 20,
24, and 25 in Table 2) and one entirely misclassified the subplot (i.e., subplot 21 in
Table 2).

Figures 1 and 2 provide the probability map and associated error for the trial site.
The median serves as the pixel-level point prediction (Fig. 1) and the error is repre-
sented by the range between the 0.25 and 0.975 quantiles (Fig. 2). Based on the shape
and sizes of the low probability forest patches it appears that but for a relatively con-
tiguous forest range in the northwest, the trial site is predominately under agricultural
land use.

Table 1 Parameter estimates
the trial logistic model with
spatial random effects

Parameters Estimates: 50% (2.5%, 97.5%)

Intercept (θ0) 82.39 (49.56, 120.46)

AprilTC1 (θ1) −0.27 (−0.45,−0.11)

AprilTC2 (θ2) 0.17 (0.07, 0.29)

AprilTC3 (θ3) −0.24 (−0.43,−0.08)

JulyTC1 (θ4) −0.04 (−0.25, 0.17)

JulyTC2 (θ5) 0.09 (−0.01, 0.19)

JulyTC3 (θ6) 0.01 (−0.15, 0.16)

OctTC1 (θ7) −0.43 (−0.68,−0.22)

OctTC2 (θ8) −0.03 (−0.19, 0.14)

OctTC3 (θ9) −0.26 (−0.46,−0.07)

σ 2 1.358 (0.39, 2.42)

φ 0.00182 (0.00065, 0.0032)

log(0.05)/φ (m) 1644.19 (932.33, 4606.7)
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Table 2 Trial predicted
probability of forest for center
subplots of the holdout plot set.
Observed value is FIA recorded
forest (1) and non-forest (0)

Plot Observed value Estimates: 50% (2.5%, 97.5%)

1 0 0.000 (0.000, 0.001)

2 1 0.428 (0.043, 0.924)

3 0 0.000 (0.000, 0.005)

4 1 0.998 (0.951, 1.000)

5 1 0.940 (0.508, 0.996)

6 1 0.981 (0.729, 0.999)

7 1 0.900 (0.355, 0.993)

8 0 0.000 (0.000, 0.000)

9 0 0.139 (0.007, 0.769)

10 0 0.000 (0.000, 0.001)

11 0 0.066 (0.000, 0.890)

12 1 0.995 (0.860, 1.000)

13 1 0.993 (0.889, 1.000)

14 0 0.001 (0.000, 0.044)

15 1 0.987 (0.840, 0.999)

16 0 0.000 (0.000, 0.004)

17 0 0.027 (0.000, 0.531)

18 0 0.000 (0.000, 0.013)

19 0 0.000 (0.000, 0.007)

20 0 0.057 (0.002, 0.627)

21 0 0.966 (0.589, 0.998)

22 1 0.990 (0.873, 0.999)

23 1 0.000 (0.000, 0.000)

24 0 0.621 (0.065, 0.974)

25 0 0.810 (0.206, 0.987)

4.3 Prediction for small AOIs

To illustrate small area prediction we selected 15 AOIs within the trial site. The AOIs
were selected prior to the analysis and based only on visual interpretation of the raw
Landsat imagery. These fixed area (36 ha) AOIs were chosen to represent high, moder-
ate, and low proportion of forest. Access to the posterior predictive distribution of each
pixel allows for straightforward generalization to the posterior predictive distribution
of arbitrary AOIs. For each AOI, the mean of its posterior predictive distribution was
calculated by (15). For the trial site, the mean of the predictive distributions for high
proportion forest AOIs ranged from 0.89 to 0.99, moderate ranged from 0.32 to 0.71,
and low ranged from 0 to 0.13.

Point estimates of the first and perhaps second order statistics of probability forest
in a given AOI are useful; however, access to the full posterior predictive distribution
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Fig. 1 Median value of pixel-specific posterior predictive distribution for probability of forest across the
trial site. The maximum probability in the image is 1.00 (black) and the minimum probability is 0.00 (white).
The 0.25, 0.50, and 0.975 quantiles of pixel values across the image are 0.00, 0.81, and 0.99, respectively

Fig. 2 Range between the 0.25 and 0.975 quantiles of pixel-specific posterior predictive distribution for
probability of forest across the trial site. This is a measure of precision for the estimates in Fig. 1. The
maximum range in the image is 0.99 (white) and the minimum range is 0.00 (black). The 0.25, 0.50, and
0.975 quantiles of pixel values across the image are 0.02, 0.13, and 0.99, respectively
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Fig. 3 CDF of the posterior predictive distribution for probability of forest within AOIs across the trial
site. AOIs of high, moderate, and low forest area were selected based on (pre-analysis) visual interpretation
of raw Landsat imagery. Solid circle markers denote AOIs thought to have low forest area. Open circle
markers denote AOIs thought to have moderate forest area. Lines with no point markers represent AOIs
thought to have high forest area. All AOIs are 20 × 20 pixels and represent 36.0 ha in area

can provide greater insight and flexability of analysis. Figure 3 offers the empirical
cumulative distribution function (CDF) and potential 0.5 cut-point for probability of
forest within AOIs. These CDFs suggest that forest and non-forest dominated AOIs
have very defined probability curves, whereas AOIs with moderate forest area present
a bimodal distribution.

5 Discussion

5.1 Trial results

The Bayesian hierarchical model presented provides access to each pixel’s full predic-
tive distribution from which the desired inferential statistics are calculated. At the first
stage of the hierarchy, the mean function of the logistic link regression is augmented
by random spatial effects. The second stage defines the Gaussian Process from which
these random effects arise. Based on our definition of the spatial process, the analysis
suggests that dependence typically extends beyond the within plot subplots to the first
and perhaps the second nearest neighbor plots. Further, the credible intervals identified
several covariates that contribute significantly to forest/non-forest discrimination.

Once model parameters were estimated, we used composition sampling to detail
each “new” pixel’s posterior predictive distribution. Based on these distributions, we
mapped the median and range between the 0.25 and 0.975 percentiles. However, any
percentile or function of the predictive distribution can be mapped. Beyond describing

123



256 Environ Ecol Stat (2008) 15:241–258

the uncertainty in probability of forest estimates, error maps can reveal missing covar-
iates and paucity of model “training” observations for certain regions or land use
classes. Within Fig. 2, there seems to be high prediction error associated with areas
adjacent to rivers. This suggests that spectral signatures associated with the land use
of alluvial plains might not be adequately represented in the observation set used for
parameter estimation, which might lead us to gather additional observations within
this land use class.

Further, the prediction error maps reveal low precision at the boundary of well
established forest and non-forest areas or patches. Boundary pixels are often referred
to as mixed pixels in the remote sensing literature, and as the prediction error sug-
gests, mixed pixels are difficult to classify because of the sub-pixel mixture of land use
classes and hence spectral characteristics. See Campbell (1996, p. 378), for a general
discussion on the challenges associated with mixed pixel classification.

The sampling design used by FIA is characterized by large distances among plots
(e.g., thousands of meters) and relatively small within plots distances (i.e., less than
63 m among subplots). In this trial, the average distance between any two plots is
3,657.55 and the average distance between any plot and its second nearest neighbor
plot is 4,954.41. This disparity in the concentration of observations will decrease the
precision in parameter estimates, specifically the precision of the parameters asso-
ciated with the spatial random effect. The large credible interval about φ is likely a
result of this disparity, (Table 1). However, the point estimate for φ, is consistent with
what we might expect in this trial landscape; specifically, high local homogeneity of
probability which is independent of land use several thousand meters away.

Methods for multiresolution Gaussian modelling for spatially replicated datasets
can potentially be adapted to the logistic model (see e.g., Banerjee and Johnson 2006;
Banerjee and Finley 2007). Multiresolution models use the disparity in the concen-
tration of observations to distinguish between macro-level and micro-level spatial
variation. Banerjee and Finley (2007), use multiresolution models with FIA inventory
data to describe spatial variation of forest biomass across plots and within plot (i.e.,
at landscape and local levels).

5.2 Computational considerations

Access to the predictive distribution of each pixel is very useful; however, it comes
at a potentially high cost. The algorithms for parameter estimation and prediction
are computationally expensive. Depending on the number of observations considered,
calculating the inverse of R, which needs to occur in both the Metropolis–Hastings
and the subsequent predictions, can be very time consuming. First, for parameter esti-
mation, our original approach was a single block update of �, which required a new
candidate φ to be drawn and R−1 calculation for each block candidate rejection, even
if the culprit was among θ, σ 2, and w. Dividing � into its components and allowing
each to be sequentially updated (much like in Gibbs sampling) significantly improved
efficiency and, as noted above, provided finer control over acceptance rates.

Second, for any given prediction, R−1 must be calculated for each posterior sam-
ple, which, depending on the chosen sample size, can make routine mapping of

123



Environ Ecol Stat (2008) 15:241–258 257

mid-resolution satellite imagery for even a small area impractical. We partially cir-
cumvented this problem by discretizing the posterior samples of φ into 1,000 intervals,
then setting the sorted vector of unique φ as a key in a key-value hash. Then for each
key, the associated R−1 was calculated and a pointer to this matrix was set at the
value component in the hash. This data structure allowed for a fast binary look-up
and retrieval of the NR−1 required for each prediction, and greatly reduced the time
required to map the trial site. Importantly, we found that discretizing φ into as few as
100 intervals had negligible effect on the estimates.

Acknowledgments This research was supported by NASA’s Earth System Science Graduate Student
Fellowship Program. Our manuscript was greatly improved by the many constructive suggestions from
Alan R. Ek, three anonymous reviewers, and the Associate Editor.

References

Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modelling and analysis for spatial data. Chapman
and Hall/CRC Press, Boca Raton

Banerjee S, Finley AO (2007) Bayesian multiresolution modeling of spatially replicated data. J Stat Plann
Infer 137:3193–3205

Banerjee S, Johnson GA (2006) Coregionalized single- and multi-resolution spatially-varying growth curve
modelling with applications to weed growth. Biometrics 61:617–625

Bechtold WA, Patterson PL (eds) (2005) The enhanced forest inventory and analysis program: national
sampling design and estimation procedures. General Technical Report SRS–80. U.S. Department of
Agriculture, Forest Service, Southern Research Station, Asheville, NC

Berger J, De Oliveira V, Sanso B (2001) Objective Bayesian analysis of spatially correlated data. J Am Stat
Assoc 96:1361–1374

Campbell JB (1996) Introduction to remote sensing, 2nd edn. Guilford Press, New York
Chilés JP, Delfiner P (1999) Geostatistics: modelling spatial uncertainty. John Wiley and Sons, New York
Cressie NAC (1993) Statistics for spatial data, 2nd edn. Wiley, New York
Ferguson TS (1996) A course in large sample theory. Chapman and Hall, London
Franco-Lopez H, Ek AR, Bauer ME (2001) Estimation and mapping of forest stand density, volume, and

cover type using the k-nearest neighbors method. Remote Sens Environ 77:251–1709
Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall,

London
Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national landcover database

for the United States. Photogramm Engi Remote Sens 70(7):829–840
Kauth RJ, Thomas GS (1976) The tasseled cap—a graphic description of the spectral-temporal develop-

ment of agricultural crops as seen by Landsat. Proceeding of the symposium on machine processing
of remotely sensed data. Purdue University, West Lafayett, pp. 41–51

McRoberts RE, Wendt DG, Nelson MD, Hansen MH (2002) Using a land cover classification based on
satellite imagery to improve the precision of forest inventory area estimates. Remote Sens Environ
81:36–44

Spiegelhalter DJ, Best N, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and
fit (with discussion). J Roy Statist Soc Ser B 64:583–639

Tomppo E (1991) Satellite imagery-based national forest inventory of Finland. Inter Arch Photogramm
Remote Sens 28: 419–424

123



258 Environ Ecol Stat (2008) 15:241–258

Author Biographies

Andrew O. Finley is an Assistant Professor with a joint appointment in the Department of Forestry and
Department of Geography, Michigan State University. He holds an M.S. in Statistics and Ph.D. in Natural
Resources Science and Management from the University of Minnesota. His specific research interests
include development of multi-source forest inventory strategies, as well as modeling of longitudinal and
spatially correlated data. He is a recipient of the NASA Earth Systems Science Graduate Fellowship.

Sudipto Banerjee is an Associate Professor in the Division of Biostatistics, University of Minnesota. He
holds an M.S. and Ph.D. in Statistics from the University of Connecticut, Storrs. His primary research inter-
ests include Bayesian modelling in spatial statistics, environmental modelling, public health, and general
biostatistics.

Ronald E. McRoberts is a mathematical statistician with the Forest Inventory and Analysis program of the
Northern Research Station, USDA Forest Service, in St. Paul, Minnesota. His research interests include non-
linear modelling, model-based estimation of forest attributes using satellite imagery, and spatial uncertainty
assessment.

123


	A Bayesian approach to multi-source forest area estimation
	Abstract
	Introduction
	Data and trials
	Forest inventory plot data
	Satellite imagery
	Combining FIA data and satellite imagery
	Trial
	Statistical modelling
	Non-spatial logistic model
	Logistic model with spatial random effects
	The priors and likelihood 
	Posterior sampling
	Convergence diagnostics
	Model comparison
	Prediction
	Estimating multiple pixel AOI
	Trial results
	Priors and model convergence
	Parameter estimates, model validation, and prediction
	Prediction for small AOIs
	Discussion
	Trial results
	Computational considerations
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


